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We consider the influence of quenched disorder on the relaxational critical dynamics of a system character-
ized by a nonconserved order parameter coupled to the diffusive dynamics of a conserved scalar density
�model C�. Disorder leads to model A critical dynamics in the asymptotics; however, it is the effective critical
behavior that is often observed in experiments and in computer simulations, and this is described by the full set
of dynamical equations of diluted model C. Indeed, different scenarios of effective critical behavior are
predicted.
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The critical behavior of pure systems might be changed
by introducing imperfections such as dilution, defects, etc.,
into a critical system. Such a change is answered by the
Harris criterion �1�, stating that a new diluted critical behav-
ior appears if the specific heat of the pure system is diverg-
ing. The diluted critical behavior then has a nondiverging
specific heat. Since the borderline value nc between a diverg-
ing and nondiverging specific heat at space dimensions d
=3 lies between order parameter �OP� dimensions n=1
�Ising model� and n=2 �XY model�, only the Ising case be-
longs to a new universality class. In consequence, this result
led to the conclusion that for the critical dynamics the cou-
pling of conserved quantities to the OP is of no relevance
�2,3�. The argument was the following: For the critical dy-
namics of a relaxational model, it was shown �4–6� that the
coupling to a conserved density �e.g., the energy density� is
relevant if the specific heat diverges. Due to dilution, this is
never the case, and therefore the coupling is of no relevance.
Therefore, most of the papers considered only the relax-
ational dynamics of diluted Ising systems �7–10�.

However, this argumentation is based on the asymptotic
properties of the diluted model. Experimental data and com-
puter simulations made clear that in most cases one observes
nonasymptotic critical behavior, described often by dilution-
dependent effective exponents �see, e.g., �11,12��. In such a
case the Harris criterion does not hold and therefore one has
to consider in the dynamics the coupling to the conserved
density and its effects on the effective critical behavior. In
addition, one is not restricted to the Ising case since already
in statics the effective critical behavior for n�1 is different
from the pure case �12�.

There are two relevant parameters of model C: �i� the

static coupling � of the OP to the conserved density and �ii�
a dynamic parameter, the time scale ratio w=� /�, where � is
the relaxation rate of the OP and � is the diffusion rate of the
conserved density. From the renormalization group �RG�
treatment of model C one knows that the one-loop order does
not give reliable results due to the stability of a fixed point
with the time scale ratio w=�. In two-loop �and higher� or-
der it turns out that this fixed point is unstable and model C
is characterized by strong and weak scaling regions for the
dynamics at d=3 �5,6�. Moreover, it was shown that nonas-
ymptotic effects are already present in model C �6�. In the
following, we will consider how these aspects are influenced
by disorder.

Model C �4,5� describes the relaxational dynamics of a
system characterized by an n-component nonconserved OP
�� 0�x , t� coupled to the diffusive dynamics of a conserved
scalar density m0�x , t�. The structure of the equations of mo-
tions is not changed by the presence of disorder. They read

��� 0

�t
= − �̊

�H
��� 0

+ ���,
�m0

�t
= �̊�2

�H
�m0

+ �m, �1�

where 0 and ˚ denote unrenormalized quantities. The sto-
chastic forces in �1� satisfy the Einstein relations

���i
�x,t���j

�x�,t��� = 2�̊��x − x����t − t���ij , �2�

��m�x,t��m�x�,t��� = − 2�̊�2��x − x����t − t�� . �3�

Equilibrium is described by the static functional H of the
disordered magnetic system
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H =� ddx� 1

2
r̊̃	�� 0	2 + V�x�	�� 0	2 +

1

2

i=1

n

���i,0�2 +
ů̃

4!
	�� 0	4

+
1

2
amm0

2 +
1

2
�̊m0	�� 0	2 − h̊mm0� , �4�

where V�x� is an impurity potential which introduces disor-
der to the system, and d is the spatial dimension. It contains
a coupling �̊ to the secondary density, which can be inte-
grated out. Thus static critical properties described by the
functional �4� are equivalent to those of the functional H
=�ddx 1

2 r̊	�� 0	2+V�x�	�� 0	2+ 1
2
i=1

n ���i,0�2+ �ů /4!�	�� 0	4�. The

parameters r̊ and ů are related to r̊̃, ů̃, am, �̊, and h̊m by r̊

= r̊̃+ �̊h̊m /am and ů= ů̃−3�̊2 /am. r̊ is proportional to the tem-
perature distance from the mean field critical temperature,
and ů is positive. The properties of the random potential V�x�
are governed by a Gaussian distribution with width
��V�x�V�x����=4	̊��x−x��, the double angular brackets mean
averaging over disorder. If �̊�0, Eqs. �1� describe dynami-
cal properties of a purely relaxational model �model A� in the
presence of disorder �2�.

We treat the critical dynamics of the disordered models
within the field theoretical RG method �13�, where the ap-
propriate Lagrangians of the models are studied. The average
over the random potential generates new terms in the
Lagrangians with coupling 	̊, which correspond to the static
coupling terms in H generated by the disorder. The renor-
malization of the Lagrangian leads to the RG functions, de-
scribing the critical dynamics of our models. We use the
minimal subtraction scheme with dimensional regularization
to calculate these functions.

For renormalization of the OP �� 0, fourth-order couplings

ů , 	̊, and correlation functions with �� 0
2 insertion, we intro-

duce renormalization Z-factors as �� 0=Z�
1/2�� , ů

=
�Z�
−2ZuuAd

−1, 	̊=
�Z�
−2Z		Ad

−1, and 	�� 0	2=Z�2	�� 	2 �
 is
the scale, �=4−d and Ad is a geometric factor�. Within dy-
namics renormalization factor for the OP kinetic coefficient

�̊=Z�� is introduced. The Z-factors introduced so far are
enough to renormalize the diluted model A. For model C one
needs to introduce additional renormalization factors. The
secondary density m0 and coupling parameter �̊ are renor-
malized by am

1/2m0=Zmm and am
−1/2�̊=
�/2Z�2Zm�Ad

−1/2 with
Zm

−2�u ,	 ,��=1+�2A�2�u ,	�. The kinetic coefficient � renor-

malizes as am�̊=Zm
2 �.

Defining the �-functions as d ln Z−1 /d ln 
, where Z rep-
resents any renormalization factor, one obtains the flow
equations for the renormalized static and dynamic param-
eters. The flow equations for u and 	 decouple from the
remaining parameters and are equal to expressions obtained
for any n in the diluted Ginsburg-Landau-Wilson �GLW�
model �14�. For the additional static parameter � appearing
in diluted model C we have

l
d�

dl
= ��−

�

2
+ ��2�u,	� +

1

2
�2B�2�u,	�� . �5�

The flow parameter l is related to the reduced temperature
and is consequently a measure for the distance to the critical

temperature. The function ��2�u ,	� is known from statics in
the diluted model �14�. The function B�2�u ,	�, which is de-
fined by the additive renormalization of the specific heat
within the GLW model, in the diluted case reads B�2�u ,	�
=n /2+O�u2 ,	2 ,u	�.

The flow equation for the time scale ratio �we introduce
=w / �1+w� instead� is

l
d

dl
= �1 − �����u,	,�,� − �2B�2�u,	�� , �6�

where the dynamic �-function �� in two-loop order reads

���u,	,�,� = ��
�C��u,�,� + 4	 −

n + 2

3
u	 + 20	2

+ 2	�2�3�1 − ln�1 − �� +  ln


1 − 

−


1 − 
ln � . �7�

The corresponding explicit two-loop expression for the
�-function of model C, ��

�C��u ,� ,�=�w
�C��u ,� ,�+n�2 /2, is

given in �6� �see �w in Eq. �50� there�. In these terms also, the
pure model A terms are included, which taken together with
the last three terms in the first line of Eq. �7� recover the
�-function for the diluted model A �2,8�. The zeros of the
right-hand sides of Eqs. �5� and �6�, and the corresponding
equations for u and 	 give the possible fixed points.

It turns out that for all values of n the stable fixed point
value �*=0, and the well-known asymptotic static results are
reproduced. Thus, the flow in the space of the static cou-
plings u, 	, and � for n�nc�2 looks like the flow for n
=1 �see Fig. 1�, whereas for n�nc it looks like the flow for
n=3 �see Fig. 2�. The fixed points for n=1 are indicated in
Table I. Only the mixed fixed point �M in Fig. 1� is stable.
However, depending on the initial conditions, a rich cross-
over behavior is observed. The same is true for n=3, al-

FIG. 1. Two-loop flow of static parameters for n=1. The stable
fixed point �full square� has a finite width 	 of the impurity distri-
bution and leads to asymptotic exponents different from the pure
case �unstable fixed points are indicated by full circles�. Depending
on the initial values of the renormalized couplings the effective
exponents are quite different.
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though now the pure fixed point �P in Fig. 2� is stable.
The stable fixed points are found by calculating the sta-

bility matrix and its eigenvalues �i �i represents u, 	, �, or
�. They govern the “velocity” of the flow near the fixed
points. A small stability exponent at the stable fixed point
indicates a slow approach of the asymptotic behavior. This is
the case for all n and can be seen from Table II for n=1. It is
the slow approach in the � direction that characterizes the
static flow within model C �see the extremely small values
��=0.0018 for n=1 �at the fixed point M in Table II� and for
n=3 still ��=0.1109�. In addition to the small values of the
static stability exponents near the fixed points, one also has
small values � coming from the dynamic parameter  �how-
ever, only near unstable fixed points�. Thus, one expects,
depending on the initial values of static and dynamic param-
eters, a complex behavior in the nonasymptotic region. The
effective dynamical exponent is of special interest here; it is
found by inserting the solutions of the flow equations into
the expression

zef f�l� = 2 + ��„u�l�,	�l�,��l�,�l�… . �8�

One reaches the universal asymptotic value z when the flow
comes very near the stable fixed point. One observes that the

stable fixed point value of the time ratio is always zero,
independent of the specific heat exponent value of the pure
model. Consequently, the results for model A are recovered
in the asymptotics �either in the diluted universality class for
n�nc or in the pure model A universality class for n�nc�.
This combines with the fact that even in the region where
dilution changes the static critical behavior, the stable fixed
point value of �* is always zero. In consequence, the second-
ary density is, for all n, asymptotically decoupled and has an
asymptotic dynamical exponent zm=2.

The nonasymptotic behavior is, however, quite different,
as can be seen from Figs. 3 and 4. Due to the static nonas-
ymptotic behavior also the dynamics is dominated by differ-
ent nonasymptotic effects. This can be seen by comparing
different zef f�l� for different initial conditions. The curves a,
b, and c in Fig. 1 and all curves in Fig. 2 reach large values
of the coupling � and/or 	, and this leads to the typical
maximum in the effective exponents independent of the ini-
tial value of  �for the statics see, e.g., �12��. However, an
additional fixed point P� is present at n=1. This leads, for
curve d in Fig. 1, almost to a plateau of zef f at its value for
the unstable fixed point P�. This plateau is more pronounced
when the flow comes nearer to P�, where it stays longer
because of the small transient exponent �. For curve c, both
effects �the maximum and the effect of fixed point P�� are
combined, leading to the minimum in zef f. Consider now the
contributions to the effective dynamical critical exponent zef f
of different origin: �i� from the terms already present in
model A �dashed curve in Fig. 5�, �ii� from terms present in

TABLE I. Static and dynamic fixed points for n=1. Fixed points
�FPs� with *=1 �w*=�� are always unstable and not shown. M is
the stable fixed point of the diluted model C.

FP u* 	* �* *

G 0 0 0 0

G� 0 0 1.414 0

P 1.315 0 0 0

P� 1.315 0 0.458 0

C 1.315 0 0.458 0.266

M 1.633 0.021 0 0

TABLE II. Stability exponents according to the fixed points in
Table I for n=1.

FP �u �	 �� �

G −1 −1 −0.5 0

G� −1 −1 1 0

P 0.566 −0.105 −0.053 0.052

P� 0.566 −0.105 0.105 −0.053

C 0.566 −0.105 0.105 0.041

M 0.494 0.194 0.0018 1.139

FIG. 2. Two-loop flow of static parameters for n=3. The stable
fixed point �full square� has a zero width 	 of the impurity distri-
bution and leads to asymptotic exponents equal to the pure case
�unstable fixed points are indicated by full circles�. However de-
pending on the initial values of the renormalized couplings the ef-
fective exponents are quite different and also depend on the initial
value of the width 	.

FIG. 3. Effective dynamical exponent for n=1 for different ini-
tial conditions. The lines correspond to the static flows shown in
Fig. 1.
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pure model C only �short dashed curve�, and �iii� from terms
present in the diluted model C only �dashed-short dashed
curve�. The above contributions may add up to almost the
asymptotic value of the exponent, although the parameters
are far away from their asymptotic values. This is an impor-
tant point since the appearance of an asymptotic value in one
physical quantity does not mean that other quantities have
also reached the asymptotics. This is due to the different
dependences of physical quantities on the model parameters.
Another special feature of the diluted model C is that already
in one-loop order one observes qualitatively the same behav-
ior as in two-loop order, of course with changed values for

the exponents and the borderline value nc, which in one loop
is at nc=4.

In conclusion, we remark that contrary to the general be-
lief, the coupling of a conserved density to the order param-
eter is relevant for the calculation of the dynamical critical
behavior of diluted systems since this coupling is important
to describe nonasymptotic effects. These effects have been
seen in the experiments on physical systems �12,15� as well
as in Monte Carlo simulations �16�.
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FIG. 4. Effective dynamical exponent for n=3 for different ini-
tial conditions. The lines correspond to the static flows shown in
Fig. 1.

FIG. 5. Different contributions to the effective dynamical criti-
cal exponent for n=1. The solid line represents the total zef f; for the
other lines see the text.
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